Oxidation of methionine residues in proteins of activated human neutrophils.

نویسندگان

  • H Fliss
  • H Weissbach
  • N Brot
چکیده

A simple assay for the detection of 35S-labeled methionine sulfoxide residues in proteins is described. The assay, which is based on the ability of CNBr to react with methionine but not with methionine sulfoxide, requires the prelabeling of cellular proteins with [35S]methionine. The assay was used to study the extent of methionine oxidation in newly synthesized proteins of both activated and quiescent human neutrophils. In cells undergoing a phorbol 12-myristate 13-acetate-induced respiratory burst, about 66% of all methionine residues in newly synthesized proteins were oxidized to the sulfoxide derivative, as compared with 9% in cells not treated with the phorbol ester. In contrast, quantitation of methionine sulfoxide content in the total cellular protein by means of amino acid analysis showed that only 22% of all methionine residues were oxidized in activated cells as compared with 9% in quiescent cells. It is proposed that methionine residues in nascent polypeptide chains are more susceptible to oxidation than those in completed proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils.

Reactive oxygen intermediates generated by neutrophils kill bacteria and are implicated in inflammatory tissue injury, but precise molecular targets are undefined. We demonstrate that neutrophils use myeloperoxidase (MPO) to convert methionine residues of ingested Escherichia coli to methionine sulfoxide in high yield. Neutrophils deficient in individual components of the MPO system (MPO, H(2)O...

متن کامل

Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation

Methionine residues exhibit different degrees of susceptibility to oxidation. Although solvent accessibility is a relevant factor, oxidation at particular sites cannot be unequivocally explained by accessibility alone. To explore other possible structural determinants, we assembled different sets of oxidation-sensitive and oxidation-resistant methionines contained in human proteins. Comparisons...

متن کامل

Methionine sulfoxide and the oxidative regulation of plasma proteinase inhibitors.

The sensitivity of methionine residues to oxidation is a mechanism by which many proteins, including plasma proteinase inhibitors, may be oxidatively inactivated. Much evidence suggests that methionine oxidation and concurrent losses of protein activity not only occur widely in living systems but are physiologic, homeostatic processes. Neutrophils, macrophages and other leukocytes secrete large...

متن کامل

In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species.

Methionine residues in alpha/beta-type small, acid-soluble spore proteins (SASP) of Bacillus species were readily oxidized to methionine sulfoxide in vitro by t-butyl hydroperoxide (tBHP) or hydrogen peroxide (H2O2). These oxidized alpha/beta-type SASP no longer bound to DNA effectively, but DNA binding protected alpha/beta-type SASP against methionine oxidation by peroxides in vitro. Incubatio...

متن کامل

Neutrophil granulocytes uniquely express, among human blood cells, high levels of Methionine-sulfoxide-reductase enzymes.

L-Methionine (Met), in its free form or when inserted in proteins, is sensitive to oxidation of its thioether group by reactive oxygen species from exogenous or endogenous sources. Two stable diastereomers of Met sulfoxide [Met-(O)] may be formed [Met-S-(O) and Met-R-(O)], but these can be reduced by two classes of Methionine-sulfoxide-reductase (Msr) enzymes: MsrA, which reduces the S, and Msr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 80 23  شماره 

صفحات  -

تاریخ انتشار 1983